

Terrestrial Planet Finder Mission

TPF

Terrestrial Planet Finder

TPF EXPO'03

Dan Coulter, Project Manager

October 14, 2003

Why Are We Here?

- From the Project's perspective the EXPO is a community engagement, outreach and communication opportunity
 - It brings together our science, engineering, technology and management community
 - It brings together our NASA, industry, academic and JPL stakeholders
 - We hope to provide you with useful information on the status of TPF over the next two and one half days
- From the community's perspective the EXPO is an opportunity to see, at least with broad brush strokes, what's going on with TPF
 - You will hear what we're doing all across the project (both inside and outside of JPL)
 - You will hear how well we're doing
 - You will hear about future plans
 - You will have an opportunity to network with the project and the rest of the community
- I invite you to comment on anything you hear or don't hear this week as well as whether you think this is a valuable use of two and one half days. Please email me at: **dcoulter**(a)**ipl.nasa.gov**

Terrestrial Planet Finder Mission

Terrestrial Planet Finder Mission

Salient Features

- mid-IR nulling Interferometer (structurally connected or formation flying type) or visible-NIR Coronagraph
- Starlight suppression to 10⁻⁶ (mid-IR) or 10⁻¹⁰ (vis-nir)
- Launch Vehicle: EELV class
- L2 or Earth-trailing solar orbit
- 5 year mission life with 10 year goal
- Potential collaboration with European Space Agency DARWIN Mission

<u>Science</u>

- Survey a *statistically significant number* of solar type stars for Earth-mass planets by suppressing the light of the parent star and looking for the faint reflected vis-nir light or the thermal emission in the mid-ir from planets in the "habitable zone"
- Make low resolution spectral observations of the brightest planets looking for evidence of a habitable planet using signatures such as O₂, CO₂ and H₂O.
- Make very sensitive, low resolution spectral observations of the most interesting planets, looking for signposts of a planet that harbors life using potential biomarkers such as oxygen, ozone, or methane.
- Perform ancillary science as capability and time allow

A NASA Origins

Mission

TPF EXPO

The NASA Project Life Cycle

Terrestrial Planet Finder Mission

Kev

Gate

A NASA Origins Mission

TPF is here- Major emphasis is on demonstrating mission feasibility through science, technology and architecture studies

TPF Success Criteria for the Pre-Phase A Period

- Identify, characterize and document multiple feasible mission concepts capable of providing the TPF Science.
- Establish technical/engineering feasibility of at least one mission concept consistent with NASA's scientific, programmatic and cost goalsbe ready to enter Phase A in 2007
- Establish a robust precursor science program
- Meet or exceed the expectations of the TPF Stakeholders

Origins Mission

What's Happened in the Last Year?

- The census of known exo-planets has increased to well over 100 including systems with multiple planets and systems beginning to look more like our own
 - Numerous ground based searches are now in progress using several techniques with ever-improving sensitivity
 - Plans for planet finding space missions are proceeding (MOST, COROT, Kepler, Eddington, SIM)
 - We have greatly expanded the TPF community (academia, industry, GSFC, national observatories,...)
 - Total spending in the academic and industrial community planned for FY04 is \approx \$20M
 - Academic and industrial partners now in excess of 100 (engineers, scientists, university faculty, graduate students, post-docs, managers...)
 - Increased from 7 external contracts to 40+ for science studies, design support and technology development (more still to come!)
 - Convened a new TPF Science Working Group with leading scientists
 - Including three ESA scientists
 - Established TPF Support Office at GSFC and incorporated GSFC scientists and engineers into the project
 - Staffed up at JPL from 21 FTE to 94 FTE

Origins Mission

What's Happened in the Last Year?

- Developed new detailed pre-Phase A plan including merging with the Starlight **Project**
 - Established new organization and WBS
 - Developed a detailed budget plan down to the individual task level for the pre-Phase A period covering the years FY03-FY06
 - Replanned twice to accommodated a \$10M cut in FY04 + \$7.1M "loan" to NASA for SIRTF in FY03
 - Established a goal to be ready to enter Phase A in FY2007
 - Expanded science studies and created a Precursor Science Roadmap
 - Added new TPF topic to the NASA Code S ROSS NRA
 - Established coronagraph and interferometer design teams and developed baseline instrument designs for candidate architectures
 - Expanded technology development and created a Technology Plan
- Established regular interactions with the ESA DARWIN Project
 - Co-sponsored first joint NASA/ESA Conference on the Search for Extra-Solar Planets (Heidelberg- May 2003)
- Achieved good progress in key science, architecture and technology areas

A NASA **Origins** Mission

TPF EXPO

We Have a Balanced Plan

Element (FY03-FY06)

Planned Spending By Recipient (FY03-FY06)

ANASA

2003 Architecture Studies

errestrial Planet Finder Missic

TPF

- Two independent architecture study teams (Coronagraph, Interferometer) are analyzing various technical trades-offs with respect to TPF science requirements to identify multiple detailed point designs that could become viable mission concepts capable of delivering TPF science
- Both architecture study teams work closely with the TPF Science Working Group (SWG)
 - Teleconferences every two weeks or so
 - Technical Interchange Meetings (TIM) or SWG meetings every 3 months or so
- Both architecture study teams have a broad base of experience and expertise from participation by JPL, GSFC, the SWG, industry and academia
- Significant analysis and design progress has been made in FY'03
 - TPF Coronagraph baseline concept established
 - TPF Structurally Connected Interferometer concept (SCI) established
 - TPF Formation Flying Interferometer concept (FFI) established

2003 Technology Development

 Three independent technology teams are implementing the Technology Plan developed by the TPF Project and approved by NASA

- Interferometer Technology
 - Core, Structural Platform, Formation Flying Platform
- Coronagraph Technology
- Advanced Cryocooler Technology (Supporting multiple mission needs)
- The technology teams are coordinating with the architects, the design teams and the SWG to ensure effective flow of requirements and performance data
- The technology teams have a broad base of experience and expertise from participation by JPL, GSFC, academia, industry and the SWG
- Significant progress has been made in FY'03
 - Much more on this later

• A process has been developed for documenting, assessing and validating technology development information

2003 Science Activities

- A new Science Working Group (SWG) was selected by NASA and came together for their first meeting in October 2002.
- The SWG is well balanced and includes experts in interferometry, coronagraphs and astrobiology as well as members with expertise in relevant areas of theory and observation
- Seven SWG Sub-Teams were created to focus on various aspects of TPF and provide a support and review function for the project
 - One additional subgroup is planned to focus on ancillary science capabilities for TPF
- The SWG has provided strong support to the project in FY03
 - Precursor science needs have been identified
 - "Working" science requirements have been developed
 - The Coronagraph and Interferometer Sub-Teams have provided invaluable guidance to the design teams

Origins Mission

Terrestrial Planet Finder Mission

How Well Are We Doing? Technology Milestone Statistics

KEY		
Complete (24)		
Partially Met (4)		
Not Met (4)		

FY2003 MILESTONES	Status	Update
Coronagraph Technology		
Technology Demonstration Mirror		
High Contrast Imaging Testbed (HCIT)		
Industry Coronagraph Technology		
Select technologies		
Release Solicitations		
Select contractors		
Apodized masks & Stops		
Fabricate initial masks		
Analysis of binary masks		
WFS & C		
Take delivery of 4096 actuator mirror		
Integate into HCIT		
Tools for Integrated Modeling		
Structural/Optical alpha release		
Thermal module alpha release		
System test case modeled		
Advanced Nulling Technology		
Demonstrate visible nuller		
ACTDP		
Select Development Phase Contractors		
Hold Delta PDR's		

FY2003 MILESTONES	Status	Update
Interferometer Technology		
Core Technology		
Achromatic Nulling Testbed		
Narrowband nulling		
Broadband nulling		
Phasing System Testbed		
Definition		
Complete Development Breadboard		
Mid-IR Spatial Filters		
Advanced Nulling Technology		
Initial Integrated Optics Models		
Symmatric Beamsplitter Contract		
Cryogenic Delay Line		
Structurally Connected Platform		
SCIT- Study Phase Contracts		
Cryo-Structures Modeling & Technology		
Cryo/nano tests plan		
Prelinimary Model Forms		
Formation Flying Platform		
FAST- real time, distributed, 2 S/C demo		
Fornation Sensor Testbed		
Complete AFF		
Demonstrate Bearing Measurement		
FCT		
Formulation, architecture, design		
Robot #1 delivered		
SPHERES		

A NASA Origins Mission

= Likely update to the Technology Plan

How Well Are We Doing? Science and Architecture Study Milestone Statistics

errestrial Planet Finder Missic

TPF

A NASA Origins Mission

KEY	
Complete (12)	
Partially Met (4)	
Not Met (0)	

TPF FY2003 Architecture Milestones

Major Instrument Trades & Baseline Design Concepts	
"Small" Coronagraph	
"Large" Coronagraph	
Structurally Connected Interferometer	
Formation Flying Interferometer	

TPF FY2003 Science Milestones

Prepare TFP Science Roadmap	
Organize new SWG, Plan meetings and work efforts	
Support joint TPF/Darwin conference in Heidelberg	
Plan second joint conference (California, summer 2004)	
Support Major Science Meetings (AAS, etc)	
Science Working Group	
Develop "working" science requirements	
Identify supporting observation/theory efforts for Science Roadmap	
Develop Design Reference Mission(s)	
Support Interferometer Design team and review baseline designs	
Support Coronagraph Design team and review baseline designs	
Review and advise on Technology Roadmap	
Education & Public Outreach (Through the Navigator EP&O Office)	

New TPF SWG

Terrestrial Planet Finder Mission

TPF

A NASA Origins

Mission

Name	Organization	Name	Organization
Dana	Franklin &	Vikki	JPL
Backman	Marshall College	Meadows	
Charles	JPL, Chair, TPF	Gary Melnick	Center for
Beichman	Project Scientist		Astrophysics
Robert Brown	STScl	Bertrand	JPL
		Mennesson	
Christopher	The Metajiva	David W.	MIT
Burrows	Cooperative	Miller	
William	GSFC	Charlie	Ball
Danchi		Noecker	Aerospace
Alan Dressler	Carnegie	Huub	Leiden
	Institution	Rottgering	University
Malcolm	ESA, Darwin	Sara Seager	Carnegie
Fridlund	Project Scientist		Institution
Eric Gaidos	University of	Gene	JPL
	Hawaii	Serabyn	
Phil Hinz	University of	William	STScl
	Arizona	Sparks	
Kenneth	US Naval	Wesley	Center for
Johnston	Observatory	Traub	Astrophysics
Marc Kuchner	Center for	John	JPL
	Astrophysics	Trauger	
Douglas Lin	UC Santa Cruz	Ted von	University of
		Hippel	Texas
Rene Liseau	Stockholm	Neville Woolf	University of
	Observatory		Arizona
Jonathan	University of		
Lunine	Arizona	Coro	nagraph Ba
	· · · · · · · · · · · · · · · · · · ·		magraph Da

Held four SWG meetings

- October 2002 (Pasadena)
- December 2002(Pasadena)
- April 2003 (Pasadena)
- September 2003 (US Naval Observatory)
- Held two Technical Interchange Meetings (TIMs)
 - Interferometer
 - July 2003 (JPL)
 - Coronagraph
 - August 2003 (JPL)
- Supported two ESA Terrestrial Exoplanet Science Advisory Team (TE-SAT) Meetings
 - May 2003 (ESTEC)
 - September 2003 (ESTEC)

Red = ESA Members

Interferometer Background

NASA-ESA Interactions

- Regular Monthly Management telecons
- Visit to ESA HQ in October 2003
- Joint annual science meetings
 - Heidelberg (2003)
 - Pasadena (2004)
- ESA Membership on TPF SWG
 - Malcolm Fridlund, Rene Liseau, Huub Rottgering
- NASA Membership on TE-SAT
 - Chas Beichman, Jonathan Lunine, Bill Danchi
- Coordination on Formation Flying Interferometer **Architecture Studies**
 - Evaluation of various formations
- Jointly participated in the International Symposium on Formation Flying Missions and Technology in Toulouse (October 2002)

Origins Mission

Coronagraph Workshop Planned in Leiden (February 2004)

TPF EXPO

TPF Schedule & Budget Assumptions

Schedule

- Complete pre-Phase A in early FY2007
 - Mission architecture feasibility demonstrated based on technology development and early precursor science (e.g. exo-zodi)
- Start Phase A in mid FY2007
 - Project feasibility and scope of the mission determined based on precursor science including improved knowledge of η_{earth} from ground studies, Kepler, COROT, Eddington,...
- Start Phase B/C/D when SIM launches
- Launch in mid next decade after JWST
 - Science targets based on SIM results

Budget

- Current plan is based on the NASA POP 03-1 in-guide response
 - FY04 New Obligation Authority(NOA) is ≈\$40M
 - FY05/06 NOA is \approx \$50M/year
- In addition, the plan also assumes the following
 - The \$7M "loan" to SIRTF in FY03 will be repaid in early FY04
 - The \$10M cut in FY04 will be repaid in FY07

In Summary...

Terrestrial Planet Finder Mission

- We are enabling Planet Finding Science
- We are growing a strong Planet Finding Community
- We have a good plan
- We have a balanced plan
 - Coronagraph, interferometer and cryocoolers
 - Science, technology and design
 - JPL and our partners
- We are making good progress
- We hope you are enthusiastic about being a part of the TPF Journey of Exploration and Discovery